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Multicommodity Connected Facility Location

Two-layer network design problem, which arises from a combination
of the Facility Location and the Steiner Forest problems through the
rent-or-buy model.

Proposed by Fabrizio Grandoni and Thomas RothvoB, who presented
a constant approximation sample-and-augment algorithm.

Sample-and-Augment is a technique, due to Gupta et al., to design
randomized algorithms for rent-or-buy problems.
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Online Problems and Competitive Analysis

Parts of the input are revealed one at a time.
Each part is served before the next one arrives.

No decision made may be changed in the future.

An online algorithm ALG is c-competitive if:
ALG(/) < cOPT(!) ,
for every input /.

Competitive ratio is similar to approximation ratio.
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Online Prize-Collecting Facility Location Problem
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Online Prize-Collecting Facility Location Problem

min Z (i) + Z d(j, o(j)) + Z ()

icFa jgD¢ jeD®
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Online Prize-Collecting Facility Location Problem
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Online Prize-Collecting Facility Location Problem

Elmachtoub and Levi, and San Felice et al. independently presented
O(log n)-competitive algorithms for the OPFL.

Since the OPFL is a generalization of the Online Facility Location

problem, the Q2 (Io'°|g" ) lower bound due to Fotakis applies to it.
g log n
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Online Steiner Forest Problem

h
p1=(g.,k)
p2=(i,h)
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Online Steiner Forest Problem

Berman and Coulston presented a deterministic O(log n)-competitive
algorithm for the OSF.

Also, a (log n) lower bound to the OST due to Imase and Waxman
applies to the OSF.
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ieF pEP ecEf ecEb
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Online Multicommodity CFL Algorithm

We present a sample-and-augment algorithm inspired on the
algorithm for MCFL due to Grandoni and RothvoB.

We highlight that the Online Multicommodity Connected Facility
Location problem is not a typical rent-or-buy problem.

Because the constraints on rented edges are distinct from those on
bought edges.

However, it still has a cost scaling factor which justify the use of this
technique.

San Felice, Fernandes and Lintzmayer September 7th, 2017 9 /18



Algorithm 1: Algorithm for the OMCFL problem.

Input: (G, d, f, M)

while a new pair p = (s, t) arrives do

mp < dist(G, d’, s, t)/2; > decide if and which facilities

send (s, m,) and (t,7,) to ALGoppy, obtaining ¢(s) and ¢(t);

if ¢(s) # null and ¢(t) # null then

mark p with probability 1/M; > balance cost scaling factor

if p is marked then
send (¢(s), #(t)) to ALGogr obtaining an edge set £°;

F? « FeU{o(s). o(t)}; EP « EP U E;

for x, y € F? in the same component of G[E"] do
‘ d(x,y)«< 0, E «+ E'U{xy};

consider an (s, t)-shortest path in G with costs d’;

let be the edges of this path except for those in E;
return (F°, E®, );




Analysis of the OMCFL Algorithm

Cost of Algorithm for OMCFL is divided between facilities opening
cost (O), edges buying cost (B) and edges renting cost (R):

ALGowmcrL(P) = O(P)+ B(P) + R(P) .

And the edges renting cost (R) is divided according to the pairs in
P, P™and P:

R(P) = R™(P)+ R™(P) + R“(P) .

The cost of the offline optimal solution is also divided in this way:
OPTycr(P) = O*(P) + B*(P)+ R*(P) .
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First and Auxiliary Lemma

OPTPFL(D) S OPTMCFL(P)
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First and Auxiliary Lemma
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Some Simple Lemmas

Cost of Algorithm for OPFL is divided between facilities opening
cost (O'), clients penalty cost (1) and clients connection cost (C'):

ALGopr1(D) = O'(D) +N(D) + C'(D) .

Lemma (Facility Opening Cost)

O(P) < O'(D). ALGowcrr opens a subset of ALGopry, facilities.

Lemma (Close Pairs Renting Cost)

R™(P) < 2MN(D). At least one node of each pair paid penalty.

Lemma (Marked Pairs Renting Cost)

R™(P) < C'(D). For every marked pair, its renting edges correspond
to its nodes connections.
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Central Lemma

Lemma (Buying Cost)

E[B(P)] = O(log® n) OPTyicr(P).

E[B(P)] = M O(log n) E[OPTsr(Q)]
- woags) (VRN CO)

= O(lOg n) (OPTMCFL( ) -+ (|Og n)OPTpFL(D))
= O(log® n) OPTwcrr(P) -
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Final Lemma

Lemma (Unmarked Pairs Renting Cost)

E[RY(P)] = O(log® n) OPTyicrr(P).

E[R“(P)] < E[B(P)] + C'(D) = O(log® n) OPTyicrr(P) .
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Main Result

E[ALGOMCFL(P)] = O(|0g2 n) OPTMCFL(P)

E[ALGomcrL(P)] = E[O(P)] + E[B(P)] + E[R(P)]
= E[O(P)] + E[B(P)]
+ E[R7(P) + R"(P) + R“(P)]
< O'(D) + O(log® n) OPTyicrr(
+ 2MN(D) + C'(D) + O(log? n)
= O(log® n) OPTycrr(P) .

P)
OPTMCFL(P)
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Final Remarks

With a small change in the algorithm we are able achieve a

logarithmic bound on the expected buying cost (B(P)). Thus, we
have:

In the special case of OMCFL in which M = 1, we have

ALG2OMCFL(P) = O('Og n) OPTMCFL(P) 0

However, we are still working to improve the bound on the expected
renting cost of unmarked clients (~"(FP)).

San Felice, Fernandes and Lintzmayer OMCFL September 7th, 2017 17 / 18



Acknowledgements

That's alll

Questions?

San Felice, Fernandes and Lintzmayer

September 7th, 2017




