
Multi-Level Mutation Testing of Java and AspectJ
Programs Supported by the Proteum/AJv2 Tool

Filipe Gomes Leme1, Fabiano Cutigi Ferrari2
José Carlos Maldonado1, Awais Rashid3

1Computer Systems Department – University of São Paulo (ICMC/USP) – Brazil
2Computing Department – Federal University of São Carlos (UFSCar) – Brazil

3Computing Department – Lancaster University – United Kingdom

leme.fg@gmail.com, fabiano@dc.ufscar.br,
jcmaldon@icmc.usp.br, marash@comp.lancs.ac.uk

Abstract. The application of testing techniques and the associated test selection cri-
teria strongly relies on adequate tooling support. This paper describes the evolution
of Proteum/AJ, a tool originally conceived to support the mutation testing of aspect-
oriented (AO) programs. Proteum/AJ automates the application of AspectJ-specific
mutation operators. Its evolution, named Proteum/AJv2, also supports the applica-
tion of unit mutation operators in both Java (object-oriented) and AspectJ programs
through a newly graphical user interface (GUI). We show how the tool architecture
and the use of design patterns facilitated the addition of mutation operators as well as
the GUI development. We also describe results of a preliminary assessment study that
comprised the application of both traditional (unit) and AO-specific mutation operators
in a complete mutation testing cycle.

Demo Video: http://www.youtube.com/watch?v=v1hxRKifXbc

1. Introduction
Historically, mutation testing [5] has shown to be an effective test selection criterion to
evaluate existing test sets [10]. Furthermore, it also leads to the creation of test sets that
are effective to reveal software faults. Using mutation operators, testers can create various
slightly modified versions of a program, called mutants. Each mutant contains a single fault
and composes the set of test requirements that should be covered by the test set. Note that
due to the large number of mutants that testers must handle (i.e. create, execute and analyse),
this testing criterion strongly relies on automated mechanisms.

In previous research [6], mutation testing was customised to software developed
with aspect-oriented programming (AOP), a relatively recent software development tech-
nique [11]. The Proteum/AJ tool [7] was built to support the application of the approach
to programs written in AspectJ, which represents a mainstream AOP technology. The tool
automates a set of AspectJ-specific mutation operators [6], and supports all steps of muta-
tion testing, such as mutant generation, test case execution and mutant analysis. Note that
such operators target basic AO elements such as pointcuts and advices. As a consequence,
they impact on the interfaces between aspects and the base code (i.e. their communication
points), so that testing using such operators can be classified at the integration level.

This paper describes Proteum/AJv2, which is an evolution of Proteum/AJ to support
the mutation testing of both object-oriented (OO) and aspect-oriented (AO) programs. The
novel features of Proteum/AJv2, when compared to its predecessor, are: (i) a set of unit
mutation operators that can be applied to both Java and AspectJ programs; (ii) a newly de-
veloped graphical user interface; (iii) enhanced visualisation and manipulation of mutation
targets and mutants; (iv) customised test results reports; and (v) simultaneous management
of multiple test projects. To the best of our knowledge, Proteum/AJv2 is the only tool that



automates the mutation testing of programs developed under these two paradigms. Thus, it
represents a step towards the integrated testing of OO and AO programs.

In this paper, Section 2 describes the tool architecture and how it eases the addition
of new mutation operators as well as the new GUI development. Section 3 describes the
process of creating mutants in Proteum/AJv2 and how this is supported by the GUI. An
evaluation study, together with the obtained results, is presented in Section 4. To conclude,
we compare Proteum/AJv2 with other mutation testing tools (Section 5) and present some
final remarks (Section 6).

2. Proteum/AJv2 Architecture
The tool architecture partially implements a reference architecture for software testing
tools called RefTEST [13]. RefTEST is based on the separation of concerns (SoC) princi-
ples, on the Model-View-Controller (MVC) and three-tier architectural patterns, and on the
ISO/IEC 12207 standard. Proteum/AJv2 largely benefits from the reuse of domain knowl-
edge contained in RefTEST (organisational and supporting modules) and its easy integration
with other life-cycle tools (e.g. requirements and implementation), which has guided the
tool structuring in terms of functionalities and module interactions.

The Proteum/AJv2 architecture is depicted in Figure 1. To clarify, Proteum/AJv2
does not currently include features defined in RefTEST related to supporting and organ-
isational activities1 (e.g. documentation and configuration management). RefTEST also
requires a set of service tools (e.g. persistence and access control), which is partially imple-
mented with support of the iBATIS framework2 for data persistence.

PRESENTATION
LAYER

APPLICATION LAYER

Client Side

controller

view

core

service tools

supporting
activities

organizational
activities

DATABASE LAYER
Database

artifact

criterion

testcase

requirement

command line
interface

Graphical User
Interface

persistence

Server Side

Figure 1: Proteum/AJv2 Architecture

The Server Side includes MVC modules. The alternative user interfaces appears
on the Client Side. The core comprises the main concepts that should be handled by testing
tools, as proposed in RefTEST . In Proteum/AJv2, criterion maps to mutation testing, artefact
maps to source code, requirement maps to mutant, and test case maps to the test case itself.
For example, the criterion module handles the mutant generation, compilation and analysis,
while the test case module handles test case execution and and evaluation. Changes required
to provide support for unit operators and to build the GUI are described next.

The Mutation Engine: Since the tool architecture was designed with special attention to
the evolution and maintenance properties, adding support to unit mutation operators has not
required drastic changes in the original structure. Figure 2 shows a simplified UML diagram

1More details can be found elsewhere [13].
2http://attic.apache.org/projects/ibatis.html (07/05/2015).



that illustrates some internal details of the Proteum/AJv2 mutation engine. The classes with
grey background represent additions implemented in this version of the tool. Each mutation
operator is encapsulated within a specific class. Table 1 lists the unit mutation operators
supported by Proteum/AJv2. More details about the operators are given in Section 3.

criterioncriterion

<<interface>>
IMutationOperator

applyOperator()

MutationOperator

PWIW ...

<<external tool>>
Parser

<<external tool>>
Pretty Printer

requirementrequirement

Mutant

MutationEngine

Note: Some modules and 
dependencies are not 
exhibited due to space 
limitations.

<<interface>>
IUnitMutationOperator

applyUnitOperator()

UnitMutationOperator

…ORRN

invokes

invokes

applies

generates

AspectJ-specific
mutation operators

unit
mutation
operators

DAIC

SSDL

Figure 2: Details of the Proteum/AJv2’s mutation engine

The tool allows the selection of specific internal targets (methods and advices) to
be mutated. This is realised through the IUnitMutationOperator interface, which
contains a method whose parameters include a list of internal target names. This enforces
client classes to provide such a list. It is implemented by each unit mutation operator, i.e.
the children of the UnitMutationOperator abstract class.

The Graphical User Interface: Proteum/AJv2 brings a newly developed graphical user
interface (GUI). The creation of GUIs helps to increase the adoption of testing tools, which
otherwise represents a barrier for both academia and industry [9].

The set of requirements for the Proteum/AJv2 GUI was derived from existing test-
ing tools such as Proteum [4] and JaBUTi [16]. These requirements can be divided into:
(i) management of test projects; (ii) test case handling (e.g. addition and visualisation);
(iii) test requirement generation (mutants); and (iv) report generation. To meet such re-
quirements, we used the Mediator, Observer, Command and Singleton design patterns [8].
Observer controls the updates of graphical components in the interface. Command and
Mediator encapsulate events related to the graphical components and handle such events.
Finally, Singleton guarantees the access to the main frame to the other components.

3. Proteum/AJv2 Main Features
This section describes the main features of Proteum/AJv2 in terms of the mutation process
supported by the tool and how this process is enhanced by the addition of the new features
listed in Section 1. Note that Proteum/AJv2 licence is still under definition; the reader can
contact the authors for further information.

Running Example: To illustrate the usage of Proteum/AJv2 and its features, we selected
a customised version of the Telecom application [2], which is originally distributed together
the AspectJ tools. Telecom simulates telephony calls and conferences between two or more
local and long distance customers.

Figure 3 depicts the classes and aspects included in the application. The main basic
classes are Call, Customer and Connection (Local or LongDistance), which



model the basic entities of the system. The Billing and Timing aspects implement the
billing and timing concerns, respectively, with support of Timer, a stopwatch functionality.

Figure 3: Class diagram of the Telecom application

The Mutation Process Supported by Proteum/AJv2: Mutation testing has a high com-
putational cost due to the execution and analysis of numerous mutants. This motivates re-
searchers to spend effort to identify the so-called sufficient mutation operators [14], which
have low costs (in terms of the number of produced mutants) and high effectiveness in re-
vealing faults [14].

Based on this previous knowledge, the list of unit mutation operators introduced in
Proteum/AJv2 consists of a group of sufficient operators identified for C programs [3, 14]
and further validated by Vincenzi [15]3. They are listed in Table 14. Full descriptions can
be found in the original report by Agrawal et al. [1].

Table 1: Unit mutation operators implemented in Proteum/AJv2
Operator Description

CGCR Constant replacement using global constants
CLCR Constant replacement using local constants
CGSR Scalar variable replacement using global constants
CLSR Scalar variable replacement using local constants
VDTR Adds a trap function in scalar variables to test if variable will be zero, positive and negative
VTWD Changes the value of scalar variables for its value predecessor / successor
OASN Replacement of an arithmetic operator with shift operator
OEBA Replacement of a plain assignment with bitwise assignment
ORRN Replacement of a relational operator with other relational operator
SDWD Statement do-while replacement with while statement
SMTC Adds a statement in every loop to force execute at most n times
SSDL Systematically removes each statement

Once the mutants are created, the user can compile the mutants and run JUnit test
cases, for which the tool will collect the results and compare them to the results from the
original application. Note that for some AspectJ-specific mutation operators, the tool is able
to automatically detect equivalent mutants through the analysis of join point shadows [7].

3According to Vincenzi [15], the OLBN operator [1] – which is included in the sufficient set – is not
applicable to Java programs. The OEBA operator, on the other hand, has proved to be efficient in some
studies [3], and hence has been included in Proteum/AJv2.

4The AspectJ-specific mutation operators [6] of Proteum/AJ are also available in Proteum/AJv2.



The full set of features introduced in Proteum/AJv2 are not herein described due to
space constraints. Amongst them, we highlight: (i) multiple test project creation and man-
agement; (ii) selective mutant execution; (iii) individual test case execution; (iv) test case
activation/deactivation; (v) mutant visualisation; and (vi) source class/aspect inclusion/ex-
clusion. Proteum/AJv2 can also be operated through a command line interface, although this
paper focuses on the GUI, as next presented.

GUI Features: To create a new test project, the user needs to first create a compressed
file (in ZIP format) that includes the full source code of the system under testing (SUT) and
also compilation and test execution directives, defined as Apache Ant5 tasks. Once the SUT
is submitted to the tool, test project customisation in several ways is facilitated by the GUI
(illustrated in Figure 4a).

In the Targets window (Figure 4b), the user can select which source files will be
tested and also choose the mutation operators to be applied to the SUT. For each source file,
the user can select internal elements (methods and advices) to be mutated.

The Mutants window exhibits the set of mutants for the current test project. In the
Manage Mutants tab, the user can check the details of each mutant such as the original
and the mutated source files, the differences between these files (Figure 4c), and the mutant
status. The user can also filter the mutants by mutation operators. On the Create tab, options
related to mutant generation (e.g. re-generating all mutants or generating mutants for newly
selected mutation operators) are available.

The Reports window shows reports regarding the current test project results. For
example, it shows the number of generated mutants, the number of anomalous (i.e. non-
compilable) mutants, the number of dead mutants and the current mutation score, which is
the rate of dead mutants in relation to the total number of non-equivalent, generated mutants.
The tool also permits the user to generate an external report with results filtered by mutant
status. On the Coverage tab, the user can analyse the mutant scores broke down either by
applied operators (Figure 4d) or test cases.

Finally, the Test Cases window (not shown in Figure 4) allows the selection of test
case files to be executed (Ant directives are provided with the SUT), inclusion of new test
case files and the activation/deactivation of test cases.

4. Evaluation
This section describes an evaluation study of Proteum/AJv2. The study aimed a prelim-
inary assessment of the tool in terms of completeness and correctness. To achieve this
goal, we executed a full mutation testing process using Proteum/AJv2 over two versions of
the Telecom application, early introduced in Section 3. The first version is purely object-
oriented (implemented in Java), while the second includes some concerns modularised with
aspects (implemented in AspectJ), as depicted in Figure 3. Note that the OO version of Tele-
com was obtained by inserting aspect-related behaviour into the core classes such as Call,
Connection and Customer.

Applied methodology: After setting up the Telecom application to be used during the study,
we systematically defined functional test cases by analysing and identifying our system in-
puts and outputs, their valid and invalid equivalence classes and boundary values. Then, we
implemented test cases to cover such test conditions using JUnit for both projects (Telecom
OO and Telecom AO).

With both applications ready to be tested with Proteum/AJv2, we applied the muta-
tion testing considering three different scenarios, as shown in Table 2. Scenarios 1 and 2

5http://ant.apache.org/ (07/05/2015).



(a) Proteum/AJv2 GUI overview (b) Source code selection tab

(c) Mutant difference view (d) Coverage report by mutation operator

Figure 4: Examples of windows available in the Proteum/AJv2’s GUI.

address the newly included OO operators and scenario 3 encompass only AO mutation oper-
ators In order to gain confidence on the evaluation results, we followed the same procedure
twice and, as expected, results for the two rounds were identical.

To execute each of those scenarios we followed six steps: (A) Creation of a test
project; (B) Selection of desired targets including classes, aspects, operations (all methods
and advices were selected) and mutation operators; (C) Generation and compilation of mu-
tants; (D) Execution of mutants using the functional-adequate test set; (E) Creation of new
test cases for live mutants (mutant adequate set); (F) Classification of equivalent mutants.

Results: After applying the planned steps to all three scenarios, we were able to gather and
synthesise the results presented in Table 3. The table shows the evolution of the mutant
sets during the last four steps. For example, the number of mutants for the second scenario
was 251, in which unit operators were applied to classes and aspects of Telecom AO. After
running the initial test set (step D), 112 mutants were killed and 71 remained alive. The
enhancement of the test set (step E) killed more 41 mutants (153 killed, in total). The
remaining mutants were set as equivalent (step F), thus reaching a mutation score of 1.0.

The sizes of the new mutation-adequate test sets for each of the projects (step E) are
shown in Table 4. For example, in the second scenario (i.e. testing of Telecom AO using



Table 2: Selected targets for each scenario

Application Scenario
Targets

Classes Aspects Operators

Telecom OO OO testing (1)
Call, Connection,
Customer, Local,

LongDistance, Timer
-

CGCR CLCR CGSR CLSR VDTR
VTWD OASN OEBA ORRN SDWD

SMTC SSDL

Telecom AO OO testing (2)
Call, Connection,
Customer, Local,

LongDistance, Timer

Billing,
Timing

CGCR CLCR CGSR CLSR VDTR
VTWD OASN OEBA ORRN SDWD

SMTC SSDL

Telecom AO AO testing (3)
Call, Connection,
Customer, Local,

LongDistance, Timer

Billing,
Timing

ABAR ABHA ABPR AJSC APER
APSR DAIC DAPC DAPO DEWC
DSSR PCCC PCCE PCCR PCGS
PCLO PCTT POAC POEC POPL

PSDR PSWR PWAR PWIW

Table 3: Results

Application Telecom OO Telecom AO - OO testing Telecom AO - AO testing

Execution Step C D E F C D E F C D E F

Anomalous 80 80 80 80 68 68 68 68 6 6 6 6

Alive 218 81 29 0 183 71 30 0 55 17 8 0

Dead 0 137 189 189 0 112 153 153 0 11 20 20

Equivalents 0 0 0 29 0 0 0 30 0 27 27 35

Total 298 298 298 298 251 251 251 251 61 61 61 61

Mutation Score 0 0.628 0.867 1.0 0 0.612 0.836 1.0 0 0.393 0.714 1.0

only unit operators), we added seven new test cases to achieve full mutation score. Note
that the final test set was not revised to be an optimal (i.e. minimum) set.

Table 4: Number of tests cases on each evaluation step.
Test case set size Telecom OO Telecom AO - Unit Telecom AO - Aspect
Initial functional 22 22 22

Mutation adequate 13 7 1
Final set size 35 29 23

This case study allowed us to verify that Proteum/AJv2 is a tool capable of sup-
porting the entire mutation testing process: from mutant generation, test case execution to
mutant analysis. Also, the new GUI proved to be very helpful for quickly customising the
testing targets, specific mutant execution and analysis and for generating test reports.

5. Related Work and Limitations
To the best of our knowledge, Proteum/AJv2 is the first mutation testing tool that supports
unit mutation testing of both Java and AspectJ programs, as well as AspectJ-specific muta-
tions. Other tools like Jester6, µJava7 and PIT8 only support the mutation testing of Java
programs. In particular, µJava supports mutation testing at the unit ant class levels, while
the others only address the unit level. Besides them, AjMutator9 is a tool that supports the
mutation testing of AspectJ programs based on a subset of the AspectJ-specific mutation
operators implemented in Proteum/AJv2.

6http://jester.sourceforge.net/ (07/05/2015).
7http://cs.gmu.edu/˜offutt/mujava/ (07/05/2015).
8http://pitest.org/ (07/05/2015).
9http://www.irisa.fr/triskell/Software/protos/AjMutator/ (07/05/2015).



However, these tools have limitations specially related to the test project manage-
ment and results storage. Proteum/AJv2 leverages previous knowledge on mutation tools
from its developers’ research group, thus allowing for a wide range of test project configu-
rations, as well as experimental procedures through its interfaces.

One negative aspect of Proteum/AJv2 is that it requires an infrastructure setup to
execute. It includes the installation of the AspectJ-front toolkit and database setup. Besides,
Proteum/AJv2 can only be executed in Linux-based environments, due to its dependence on
AspectJ-front. The integration of Proteum/AJv2 with the Eclipse IDE and the development
of a pure Java parser could resolve that issue.

6. Final Remarks
We described the main features of the Proteum/AJv2 tool that supports the mutation test-
ing of Java and AspectJ programs. Similar to its predecessor [7], Proteum/AJv2 leverages
previous knowledge on the development of testing tools [4, 16] and on reference architec-
tures [13] to configure an integrated environment for testing Java and AspectJ applications.

The presented version of the tool was used to support a master’s study conducted
by Lacerda that investigated the cost reduction of mutation testing for AO programs [12].
Feedback from Lacerda and Ferrari allowed us to not only fix some bugs but also implement
improvements related to the GUI usability.

We are currently planning a series of improvements in Proteum/AJv2 to support
experimentation. This includes creating parameterised scripts to execute a chain of tasks
such as test project creation, mutation generation, test case execution and coverage analysis.
The design of customised reports are also included in the improvement plan.

Acknowledgements
We thank the financial support received from CNPq (Universal Grant #485235/2013-7),
FAPESP (grants #2011/21515-3 and #05/55403-6), and UFSCar (RTN grant).

References
[1] Agrawal et al., H. (1989). Design of mutant operators for the C programming language. Tech. Report SERC-TR41-P,

Purdue University, West Lafayette/IN - USA.
[2] Alves, P., Figueiredo, E., and Ferrari, F. C. (2014). Avoiding code pitfalls in aspect-oriented programming. In

SBLP’14, pages 31–46 (LNCS v.8771). Springer.
[3] Barbosa, E. F., Maldonado, J. C., and Vincenzi, A. M. R. (2001). Toward the determination of sufficient mutant

operators for C. Software Testing, Verif. & Reliab., 11(2):113–136.
[4] Delamaro, M. E. and Maldonado, J. C. (1996). Proteum: A tool for the assessment of test adequacy for C programs.

In PCS Conference, pages 79–95.
[5] DeMillo, R. A., Lipton, R. J., and Sayward, F. G. (1978). Hints on test data selection: Help for the practicing

programmer. IEEE Computer, 11(4):34–43.
[6] Ferrari, F. C., Maldonado, J. C., and Rashid, A. (2008). Mutation testing for aspect-oriented programs. In ICST’08,

pages 52–61. IEEE.
[7] Ferrari, F. C., Nakagawa, E. Y., Rashid, A., and Maldonado, J. C. (2010). Automating the mutation testing of aspect-

oriented Java programs. In AST’10, pages 51–58. ACM.
[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Pattern, Elements of Reusable Object-Oriented

Software. Addison-Wesley Professional.
[9] Horgan, J. R. and Mathur, A. P. (1992). Assessing testing tools in research and education. IEEE Software, 9(3):61–69.
[10] Jia, Y. and Harman, M. (2011). An analysis and survey of the development of mutation testing. IEEE Transactions

on Software Engineering, 37(5):649–678.
[11] Kiczales et al., G. (1997). Aspect-oriented programming. In ECOOP’97, pages 220–242 (LNCS v.1241). Springer.
[12] Lacerda, J. T. S. and Ferrari, F. C. (2014). Towards the establishment of a sufficient set of mutation operators for

AspectJ programs. In SAST’14, volume 2, pages 21–30. Brazilian Computer Society.
[13] Nakagawa, E. Y., Simão, A. S., Ferrari, F. C., and Maldonado, J. C. (2007). Towards a reference architecture for

software testing tools. In SEKE’07, pages 157–162.
[14] Offutt et al., J. (1996). An experimental determination of sufficient mutant operators. ACM TOSEM, 5(2):99–118.
[15] Vincenzi, A. M. R. (2004). Object-oriented: Definition, Implementation and Analysis of Validation and Testing

Resources. PhD thesis, ICMC/USP, São Carlos, SP - Brazil.
[16] Vincenzi, A. M. R., Wong, W. E., Delamaro, M. E., and Maldonado, J. C. (2003). Jabuti: A coverage analysis tool

for java programs. In SBES’03, pages 79–84.


